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Abstract. Currently, the diagnosis of tumors and malignant cells through imaging studies is 

a great challenge for expert medical personnel, due to the complexity of achieving an early 

prediction of cancer cells, which would allow to accelerate early medical treatments. Today, 

technologies have become a fundamental ally for the health sector, specifically the area of 

artificial intelligence, which has permeated many disciplines, generating important 

advances. Advances in parallel computing, GPU technology, and deep learning have made 

real-time image processing easier. The main objective of this research was to generate a 

deep learning model for the prediction of malignant cells in medical images of diagnosed 

mammograms. Using the previously trained model based on Faster R-CNN, with the 

ResNet function extractor. This model works in the Python programming language, using 

the Tensorflow framework and the OpenCv library. The algorithms were previously trained 

through the DDSM and MIAS open medical image databases, published on the web. This 

model not only focuses on recognizing and classifying malignant cells in the image, but 

also on the location of objects within it, appropriately drawing a bounding box. One of the 

latent challenges of these models since their inception has been the consumption of 

computing, but today they have been optimized so much that they allow freezing the pre-

trained models by loading them in the memory of the devices, managing to use them in 

computers without GPUs. As a result, it was found that the Faster R-CNN method with the 

Resnet101 extractor offers great advantages of precision and speed when it comes to 

detecting malignant tumors, studies that can serve as a great contribution to the bets of this 

algorithm in the health sector. 

1. Introduction 
Today there is a great public health problem worldwide, many countries face great challenges due to 

high mortality rates, the spread of infectious and non-communicable diseases and poor reproductive 

health. In recent decades, great strides have been made in increasing life expectancy and reducing 

some of the most common causes of death. As a result, globally, 170 countries have set 17 

sustainable development goals in order to have a better planet for future generations, specifically for 

this research we will be working on objective number three, health and wellness, which aims to 

decrease the rate of mortality in the countries by 2030 [1]. 

According to the Pan American Health Organization, in the Americas, cancer is the second 

leading cause of death, the types of cancer most frequently diagnosed among men are: prostate 

(21.7%), lung (9.5%), colorectal (8%), bladder (4.6%) and stomach (2.9%). Among women, the 

types of cancer with the highest incidence are: breast (25.2%), lung (8.5%), colorectal (8.2%), 

thyroid (5.4%) and cervical (3.9%).  
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The types of cancer with the highest mortality in men are: lung (19.6%), prostate (12.1%), 

colorectal (9.3%), liver (65) and stomach (5.4%). The cancers that cause more deaths among women 

are: lung (17.4%), breast (15.1%), colorectal (9.5%) and cervical (5.2%) [2]. 

According to the World Health Organization [3], each year in the Americas, more than 462,000 

women are diagnosed with breast cancer, and almost 100,000 die from this disease, if current trends 

continue, by 2030, the number of women diagnosed with breast cancer is projected to increase by 

34%. Several countries in Latin America and the Caribbean have some of the highest rates of risk of 

death from breast cancer, highlighting health inequities in the Region. Prevention strategies in 

developing countries are carried out in very advanced phases, due to the high costs of medical 

equipment, the absence of trained medical personnel and the scarce resources to acquire these 

studies. 

Despite notable advances in diagnostic technology in recent years, as well as an increase in 

campaigns aimed at promoting self-examination, many breast cancer patients continue to receive the 

diagnosis in advanced stages of the disease. Some risk factors for breast cancer are known, however, 

in most affected women it is not possible to identify specific risk factors [4][5]. Comprehensive 

cancer control encompasses prevention, early detection, diagnosis and treatment, rehabilitation and 

palliative care. In Figure 1, we can see the proportion of new cases and deaths from cancer in the 

Americas. 

Figure 1. Incidence and mortality from breast cancer in the Americas 

 

From the national level, according to the Ministry of Health with the support of the National 

Cancer Institute, the objectives of cancer control have been established, specifically in risk control, 

early detection, comprehensive treatment, palliative care, epidemiological surveillance, and talent 

development. human in oncology [6]. Presenting public policy and the 10-year cancer plan as an 

essential instrument. The number of sick and dead people from this cause has been increasing in 

recent years; the figures dictate that about 96 people die every day in Colombia from cancer. 

According to 2010 mortality figures, among women breast cancer was the leading cause of death 

(2,381), followed by cancer of the cervix (1,892), stomach (1,709), lung (1,606) and colon and 

rectum (1,456).  
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Among men, cancer mortality for the same year was led by malignant tumors of the stomach 

(2,796), followed by those of the prostate (2,431), lung (2,357), colon and rectum (1,261) and 

leukemias (890) [7]. 

From the local level, the population of the department of Sucre, like that of Latin America, has a 

significant incidence of chronic non-communicable diseases, in particular cardiovascular diseases, 

cancer, diabetes and chronic respiratory diseases. From the departmental administration they propose 

the initiative to make use of science, technology and innovation, which allow identifying and 

overcoming the social and environmental determinants related to the appearance of these diseases. 

Through alliances that include the public and private sectors, as well as NGOs, professional 

associations, the academic sector and international organizations [8]. 

In the department of Sucre, there are different health entities that have medical equipment to carry 

out radiological studies, but most of them are digitized, where the image is captured in analog form 

on a photostimulable phosphor plate (barium halide fluoride activated with europium impurities), 

compared to the most sophisticated radiology equipment, which comes with digital technology, 

which have introduced changes in the identification of suspicious images, digital storage to monitor 

patients, among others. This has allowed the generation of complementary decision-making tools 

when it comes to expert medical personnel making an accurate assessment. 

Cancer is an aggressive disease with a low median survival rate. Treatment is long and very 

expensive due to its high recurrence and mortality rates. Early diagnosis and prediction of cancer 

prognosis are essential to improve the patient's survival rate. It exhibits a wide spectrum of 

behaviors, some are clinically indolent and others are aggressive, requiring prompt treatment. Today, 

doctors face different obstacles and challenges, such as the existence of less defined tumors, 

generating little visibility and distinction of cancerous tissues. This leads to false negative diagnoses, 

erroneous evaluations by medical personnel, when diagnosing a sick person as healthy, 

consequently, this can worsen the patient's health and delay treatment. Studies show that more 

experienced radiologists visually scan CT images more systematically [9]. The human field of vision 

may be short when making these diagnoses, since it only covers the equivalent of a circle of about 

2.5 centimeters in diameter with high definition, and also for a defined time [10]. In figure 2, we can 

detail the width of the human visual field. 

 

Figure 2. Structure of the visual field of humans 
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In figure 2, we detail the visual field of each individual where the objects located in the space can 

be seen. In which, there are differences in the more defined or less defined surface qualities 

depending on their distance and the quality of the colors is appreciated; if they are close, they are 

saturated; if they are far away, they are modulated and not modulated. 

In relation to the above, technological advances will be a crucial alternative to develop 

methodologies that reduce mortality in cancer patients. This disease is difficult to diagnose in the 

early stages or can easily relapse after treatment. Furthermore, the precise predictions of the disease 

prognosis with high certainty are very complex. Some cancers are difficult to detect in their early 

stages due to their vague symptoms and distinctive indications from mammograms and scans [11]. 

Therefore, it is imperative to develop better predictive models using multi-variable data and high-

resolution diagnostic tools in clinical cancer research. Artificial intelligence will be one of the best 

allies of medical professionals in the diagnosis and treatment of many diseases, such as cancer. 

Studies have shown that artificial intelligence algorithms have the ability to identify cell by cell and 

detect if it is a cancer cell or if it is a normal cell. And, through spatial correlation, it is able to make 

much more reliable predictions [12]. 

On the other hand, the creation of imaging techniques such as ultrasound, mammography, x-rays, 

computed tomography (CT), fMRI, magnetic resonance, or nuclear medicine, histology, and 

histopathology have marked a crucial point in the development of diagnoses of malignant cells in the 

medical sciences. The images generated by the medical teams of these modalities have two 

fundamental characteristics, compared to the analog radiography images, these being the spatial 

resolution (number of pixels per inch or cm) and the density or depth (gray levels that can be 

represent), who owns the image [13]. 

Within imaging tests for cancer diagnosis, artificial intelligence finds great utility in the execution 

of 3 main clinical tasks: (Detection, characterization, and monitoring of tumors). 

Detection refers to the location of objects of interest on radiographs, collectively known as 

computer-assisted detection. The characterization broadly captures the segmentation, determining the 

shape or volume of the lesion, the histopathological diagnosis, and disease status or molecular 

profile. Segmentation defines the extent of an abnormality. Monitoring; It allows capturing a large 

number of discriminating characteristics, to verify the progression or regression of the disease and 

the monitoring of the appearance of a target or cancer mutations associated with resistance in near 

real time [14]. 

Although this technology is still in the testing phase and cannot be widely used at the moment, its 

implementation gives an idea of what the future may hold for the field of Artificial Intelligence 

applied to medicine. The researchers caution that these findings must be clinically validated in 

different types of patients. 

The images today play a fundamental role in the process of medical care of patients, imaging 

studies have transformed modern medicine, to such an extent, from making diagnoses in acute 

pathologies. 

Radiological and histopathological studies, which are part of imaging diagnosis, have become 

complementary tools that allow early detection of cancer cells in imaging tests, but today these 

evaluations are still short, due to the fact that medical opinions are highly dependent of specialist 

expertise. 

The images provide valuable information for personalized medicine, becoming an important input 

for non-invasive medical procedures that do not involve instruments that break the skin or physically 

penetrate the body, which do not affect the integrity of people. These tools have strongly 

complemented the early detection of breast cancer patients. 

The main causes of mortality in patients diagnosed with breast cancer lie in late diagnosis, high 

examination costs, extensive administrative processes, poor visibility and distinction of cancerous 

tissues. 
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Today, the integration of technology and computational methods have optimized early diagnosis, 

applications involving artificial intelligence technologies in medicine, imply a revolution in the way 

medical studies are perceived, this technology has left behind traditional prediction methods that are 

based on patient variables such as age, family history of cancer, or tissue density. However, these 

factors are weakly correlated with the possibility of developing cancer. 

Collaboration between medical pathologists, oncologists, systems, electronic, and biomedical 

engineers has enabled the improvement of early cancer diagnoses, through the integration of 

technology and computational methods, in a new area known as digital pathology that optimizes 

traditional pathology. 

The importance of carrying out this research lies in a non-invasive proposal related to a deep 

learning model for the detection of cancer cells in real time in breast tissues, with the aim of 

achieving early treatments in patients suffering from this pathology. 

2. State of the art 
A review of the state of the art was made from the international to the national level, of the 

investigations related to the use of deep learning algorithms for the prediction of malignant cells in 

mammographic images, finding the following studies: 

Authors Scott Mayer McKinney, Marcin Sieniek, and Shravya Shetty of the Department of 

Surgery and Cancer, Imperial University of London in January 2020, conducted research titled 

“International Assessment of an Artificial Intelligence (AI) System for Cancer Detection breast”, 

presenting a proposal as a complementary tool for expert medical personnel in the area, with the aim 

of making predictions of cancer cells using imaging studies. The authors evaluated the performance 

of the algorithm in a clinical setting with a representative dataset from the UK and the US They 

conducted an independent study with six radiologists, to assess the efficiency of the AI system, 

where it outperformed all expert medical personnel. The area under the receiver operating 

characteristic curve (AUC-ROC) for the AI system was greater than the AUC-ROC for the average 

radiologist by an absolute margin of 11.5%. Where they concluded that this technology can have a 

great impact on the health sector, specifically on the detection of different types of Cancer, which 

could help mitigate the high mortality rates from this cause [15]. 

On the other hand, the authors Rui Yana and Fei Ren from the area of Informatics and 

Technology of the University of Anhui, Hefei of China, in the year 2019, carried out an investigation 

entitled “classification of histopathological images of breast cancer using a deep neural network 

hybrid ”, generating an artificial intelligence model to support medical personnel in histopathological 

diagnosis, due to the complexity of this type of study and the dramatic increase in workload, making 

this task time consuming, as a consequence, Results may be subject to the subjectivity of the 

pathologist. In this article, they propose a new hybrid recurrent convolutional deep neural network 

for the classification of histopathological images of breast cancer. 

 Based on multilevel feature representation of histopathological image patches, the method 

integrates the advantages of recurrent and convolutional neural networks, and short and long term 

spatial correlations between feature patches are preserved. The experimental results showed that the 

technique presented an efficient method in contrast to those of the state of the art with an average 

precision obtained of 91.3% for the classification task of 4 classes. Model training was performed 

with a dataset of 3,771 histopathological images of breast cancer, with variability in subclasses 

spanning different age groups, which provided sufficient diversity of data to alleviate the problem of 

relatively accurate classification. Low benign images [16]. 
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The authors Andrea Duggento, Manuel Scimeca, Nicoletta Urbano and Elena Bonanno from the 

department of biomedicine and prevention at the University of Rome in Italy, developed an 

investigation entitled “a deep neural network of random initialization to discriminate malignant 

lesions from breast cancer”. In this context, the researchers affirm that the rates of false positives and 

false negatives when making a cancer diagnosis, commonly achieved by radiologists, are extremely 

high, and some authors have estimated figures of up to 20% of the total diagnosis or more. Hence, 

the great importance of computer-assisted diagnosis that has been driven by the introduction of deep 

learning techniques in general and convolutional neural networks (CNN) in particular. In this article, 

we propose a design and validation of an ad-hoc CNN architecture specialized in the classification of 

breast lesions and heuristic exploration on possible combinations of parameters and architecture 

styles to propose a model selection criterion that can emphasize reducing false negatives while 

maintaining acceptable accuracy. They achieved regular classification performance in the validation 

and test set, "Model 1" and "Model 2" achieved an AUC of 0.785 and 0.774, respectively. 

Demonstrating a moderate classification, demonstrating how an ad-hoc random initialization CNN 

architecture can provide practical help in the classification and staging of breast cancer [17]. 

Furthermore, the authors Zhen Zhang, Yaping Wang and Jiankang Zhang from the Zhengzhou 

University of China, developed an investigation entitled “comparison of multiple feature extractors 

in the fastest RCNN architecture for detecting breast tumors” The learning algorithm Deep shows 

great ability in pattern recognition tasks like object detection and speech recognition. Compared to 

typical machine learning methods that require manual feature extraction. The deep learning 

algorithm has more powerful feature learning ability. In this document, the deep learning associated 

object detection method is applied in the localization and classification of lesions for the detection of 

medical masses of mammary cells. At the same time, five network function extractors are used, 

which are ResNet101, V2 start, V3 start, Mobilenet and ResNet V2 start, which were investigated to 

explore the impact of the model. The dataset from the Digital Mammography Detection Database 

(DDSM) was used for research, with the objective of determining the performance of the models 

associated with the five feature extractors and comparing them separately in the detection of 

mammographic images. with benign and malignant tumors, according to the ROC compensation 

curves. The simulation results demonstrate that the classification model with the Inception ResNet 

V2 feature extractor had the best performance, compared to the other four feature extractors [18]. 

2.1 Comparison between deep learning algorithms for object detection 
A state of the art review was performed to validate the performance of the Fast-RCNN, Faster-

RCNN, R-FCN and SSD algorithms using different free databases on the web, where MS COCO, 

IMAGENET and PAS-CAL VOC stand out. with the purpose of reviewing speed and precision 

parameters of these methods using different image resolutions in different contexts. 

It is important to note that technology is constantly evolving, any comparison can quickly become 

obsolete. An exhaustive review of scientific and academic documents on the performance of 

different object detection models with the Keras and TensorFlow framework was carried out, where 

the following studies were found; 
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In Table 1 the advantages and disadvantages of methods Fast R-CNN, Faster R-CNN, R-FCN, 

SSD and YOLO for detecting objects in images will be high- lighted by various experiments 

conducted by a variety of authors investigated in Deep Learning area. 
 

Table 1. Advantages and disadvantages of some methods for detecting objects 

in images. 
 

Method Authors Advantage Disadvantages 
 
 
Fast R-
CNN 

 

 
(Girshick, 2015) 

[19] 

The calculation of the 

characteristics 

of CNN is done in a single 

iteration, achieving that the 

detection of objects is 25 times 

faster than the RCNN method (it 

requires 20 seconds 

on average to analyze an image). 

 
The use of an external 

candidate region generator 

creates a bottleneck in the 

detection process. 

  
Faster R-
CNN 

 
(Renet al., 

2015)[20] 

The RPN method allows object 

detection to be almost real-time, 

approximately 0.12 seconds per 

image. 

Despite the efficiency of the 

algorithm, 

it is not fast enough to be 

used in applications that 

require real time, 

as would be the autonomous 

vehicles. 

R-FCN (Dai et al., 

2016)[21] 

The test time of R-FCN is much 

faster than that of R-CNN 

R-FCN has a competitive mAP 

but lower than that of Faster R-

CNN. 

 
 

Mask R-
CNN 

 
 

(He et al., 

2017)[22] 

 

The location of the objects is 

more precise, when making a 

segmentation of the objects in 

the images. 

Its execution time is greater than 

that used by the Faster-RCNN 

method, therefore, it can not 

be 

be implemented in applications 

that 

require real time. 
 
YOLO 

 

(Redmon et al., 

2015)[23] 

The location of objects is very 

efficient, allowing its use in 

real-time applications. 

The method has difficulties 

to correctly detect small objects. 

 
SSD 

 
(Liu et al., 

2016)[24] 

The use of a single network, 

makes 

the location of the objects faster 

than the Fast-RCNN and Faster-

RCNN 

methods. 

The detection accuracy of the 

objects is lower compared to 

the Fast-RCNN and Faster-

RCNN 

methods. 

 

3. Methodology 
In recent years, the architecture of the deep networks has been a significant progress for the moment 

Keras and TensorFlow dominates with different-pre- trained models already included in libraries, 

among these include VGG16, VGG1, ResNet50, Inception V3, Xception, MobileNet. The VGG and 

AlexNet 2012 net- works follow a typical pattern of classical convolutional networks. MobileNet is a 

simplified architecture Xception architecture, optimized for mobile applications. The following 

architectures; ResNet, Inception and Xception have become a reference point for subsequent studies 

of artificial vision and learning for its versatility Deep. 

There are many factors that explain the revolution of deep learning, among these factors is 

highlighted; availability of sets of huge data and quality, parallel computing (GPU) features efficient 

activation for backpropagation, new architectures, new regularization techniques that allow train 

more extensive networks with less danger of overshooting, robust optimizers and software platforms 

with large communities like TensorFlow, Theano, Keras, CNTK, PyTorch, Chainer and Mxnet. All 

this has allowed solving problems easier. Today the Python programming language has great 

importance in Machine Learning compared to other languages because of its support for Deep 

learning framework. 
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Within this framework include TensorFlow which is a library of open source software for 

machine learning that allows you to deploy computing in CPU or GPU, developed by Google, using 

graphs flow data, PyTorch uses Python language and has the support of Facebook, Theano is a 

Python library that supports mathematical expressions involving tensioners, CNTK are a set of tools 

developed by Microsoft, open for Deep learning code, Keras is a library of neural networks high 

level created by Francis Chollet, member of Brain google equipment that lets you choose whether 

the models that are built will be executed in Theano, TensorFlow or CNTK. Keras and TensorFlow 

can construct models of three different ways; using a sequential model, a functional API and pre-

trained models. 

Earlier we talked about the different architectures (MobileNet, Inception, ResNet, among others), 

now we discuss models for object recognition and Keras TensorFlow; Faster-CCN R, R-FCN, SSD 

and YOLO. These models are classified based detectors in the region (Faster R-CNN, R-FCN, FPN) 

and single shot detectors (SSD and YOLO), start from different paths, but they look very similar 

now fighting for title faster and more accurate detector. 

There are different metrics that can improve object detection algorithms based on more accurate 

positioning, faster speed and more accurate classification; metrics that stand out are: Intersection 

over Union (IoU), mean average precision (MAP) and rendered frames per second (FPS). 

Intersection over Union (IoU)It is an indicator that determines how close the predicted picture of the 

real picture. The average metric average accuracy (MAP) is the product accuracy and recovery 

detection bounding boxes. It’s a good combined measure of how sensitive the network to objects of 

interest and how well it avoids false alarms. The higher the score the map, the more precise the 

network, but this has a cost of execution speed. Processed frames per second (FPS) is used to judge 

how fast is the system. 

3.1 Datasets 
For the training of the selected RCNN and SSD models, free databases of mammography medical 

images were used, already diagnosed by specialized medical personnel, specifically the digital 

database for detection mammography (DDSM) and the Society for the Analysis of Mammographic 

Imaging (MIAS). 

3.1.1 DDSM - Digital Database for Screening Mammography. The Database (DDSM) is a resource 

for use by the mammographic imaging research community. Primary support for this project was a 

grant from the U.S. Army Medical and Materiel Research Command Breast Cancer Research 

Program.The DDSM project is a collaborative effort involving colleagues at Massachusetts General 

Hospital (D. Kopans, R. Moore), the University of South Florida (K. Bowyer), and Sandia National 

Laboratories (P. Kegelmeyer). The primary purpose of the database is to facilitate sound research in 

the development of computer algorithms to aid in detection. Secondary purposes of the database 

may include the development of algorithms to aid in diagnosis and the development of teaching or 

training aids. The database contains approximately 2,500 studies. Each study includes two images 

of each breast, along with some associated information about the patient and the diagnosed 

pathology [25].  
3.1.2 Mammographic Image Analysis Society (MIAS). It is an organization of UK research groups 

interested in understanding mammograms and has generated a database of digital mammograms. 

Images taken from the UK's National Breast Detection Program have been digitized to a 50 micron 

pixel edge with a Joyce-Loebl scanning microdensitometer, a linear device in the 0-3.2 optical 

density range and representing each pixel with an 8-bit word. The database contains 322 digitized 

images. All images are diagnosed by expert medical personnel, with all locations of any 

abnormalities that may be present. All images have a dimension of 1024x1024 [26].
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4. Results 
For the development of this research, the deep learning method Faster-RCNN was used with the 

ResNet50 architecture, supported under the TensorFlow framework, the Python programming 

language and the OpenCV library. This model was trained on a Linux server with 32 cores and 93 

GB RAM, where 10,000 medical images of mammograms diagnosed with malignant and binary 

tumors from the DDSM and MIAS databases were used, with different resolutions. The cross-

validation technique was 85% of the images for training and 15% for validation. Deep convolutional 

neural networks were successfully applied to localize calcifications and masses on mammography 

images using the BI-RADS criteria. During the training there was a problem with the images with 

high resolutions, to solve this problem, smaller patches of the main images were formed, with the 

objective of improving the detection of the algorithms and increasing the data. As can be seen in 

figure 3 and 4. 

 
 

 
 

Figure 3. Evaluation of neural networks in image patches [27]. 

 

 
Figure 4. Examples of highest scoring patches for malignancy [27]. 

 

For the following investigation, the following block diagram was used to detect malignant tumors 

in mammography images. 
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Figure 5. Block diagram of the system 

 

The trained algorithm is capable of detecting masses and classifications in order to verify the 

probability of detecting a malignant or benign tumor, as we can see in Figures 6-8. 

 

 
Figure 6. Detection of malignant tumors with the Faster-RCNN model and the Resnet50 extractor. 

 

 
Figure 7. Detection of malignant tumors with the Faster-RCNN model and the Resnet50 extractor. 



EXPOTECNOLOGIA 2020
IOP Conf. Series: Materials Science and Engineering 1154  (2021) 012013

IOP Publishing
doi:10.1088/1757-899X/1154/1/012013

11

 
Figure 8. Detection of malignant tumors with the Faster-RCNN model and the Resnet50 extractor. 

 

In figures 6,7 and 8 we can see the effectiveness of the Faster-RCNN model with the Resnet50 

extractor, at the time of detecting malignant tumors, for this case images already previously 

diagnosed in the DDSM and MIAS databases were used. It is important to highlight that the more 

diagnosed images used to train the model, the better the algorithm's behavior. 

5. Conclusion 
We can conclude that the Faster-RCNN algorithm with the Resnet50 feature extractor is a good 

predictor of tumors in mammography images, but its functionality depends on the quantity and 

quality of the images with which the algorithm is trained, which shows us the great importance of 

this type of research, to complement the medical diagnoses of breast cancer, which has a high 

incidence and deaths worldwide. 

It is important to highlight from this research that, depending on the type of application, a faster, 

slower or more precise model should be selected. In addition, combinations can be made between 

feature extractors and other parameters mentioned above, which will allow better performance 

depending on the application. 

The difference between the detectors is narrowing. Single shot detectors use more complex 

designs to increase their accuracy, and region-based detectors speed up operations to be faster. There 

are many challenges to be overcome in object detection methods, deep learning will have a more 

prospective future in a wide range of applications in the field of medicine. 

As future work, it is proposed to train other models and architectures using boxes and masks not 

only to locate the tumor within the mammogram, but also to create a mask with its shape. In this 

way, the tumor size can be estimated more precisely and taken into account in the decision-making 

task. 
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